If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+24x-280=0
a = 2; b = 24; c = -280;
Δ = b2-4ac
Δ = 242-4·2·(-280)
Δ = 2816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2816}=\sqrt{256*11}=\sqrt{256}*\sqrt{11}=16\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-16\sqrt{11}}{2*2}=\frac{-24-16\sqrt{11}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+16\sqrt{11}}{2*2}=\frac{-24+16\sqrt{11}}{4} $
| 8y+8=-4(y-5) | | 3x+80=150 | | 2x^2+32x+128=64x | | 32-4y=2y+8 | | 7*(2x-3)=5*(x+3) | | 6y+32=-4y-8 | | 2(x^2+16x-140)=0 | | -1+4x=-3+14 | | 6y-42=7y-62 | | 5÷3x+1=12 | | 2x-10=4*(x-3) | | 11/(8+9/3)=t | | 13*4-65/13=t | | 10(2x-1)=8(2x+1)+4x-18 | | 4(8-y)=2y+8 | | 9+4*6-65/13=t | | 3x-7=23+3x | | 32x^2-78x+27=0 | | 7x-9(1/9x-1/9)=1 | | W=3.5h+111.22 | | 32x^2-78x=2 | | 11x-6=10x+3 | | 7•x+1=7 | | 4/3a+4=2/3a-9 | | 6x-95=+65 | | 2/3(3x-21)=6 | | -29+2x=43-x | | 72=0.9v | | 3(x-2)+12+42=180 | | -19-9x=-12x+38 | | 3^x-1+8=35 | | 55x^2-16x=0 |